An Empirical Study on the Security of Cross-Domain
Policies in Rich Internet Applications

Georgios Kontaxis, Demetris Antoniades,

lasonas Polakis and Evangelos P. Markatos
Institute of Computer Science
Foundation for Research and Technology, Hellas

{kondax,danton,polakis,markatos}@ics.forth.gr

ABSTRACT

Adobe Flash and Microsoft Silverlight are two widely adopted plat-
forms for providing Rich Internet Applications (RIA) over the World
Wide Web. The need for RIAs to retrieve content hosted on differ-
ent domains, in order to enrich user experience, led to the use of
cross-domain policies by content providers. Cross-domain policies
define the list of RIA hosting domains that are allowed to retrieve
content from the content provider’s domain. Misinterpretation or
misconfigurations of the policies may give the opportunity to mali-
cious RIAs to access and handle users’ private data.

In this paper we present an extensive study on the deployment
and security issues of cross-domain policies in the web. Through
the examination of a large set of popular and diverse (both geo-
graphically and content-wise) websites, we reveal that about 50%
(more than 6.500 websites) of the websites that have adopted such
policies are vulnerable to attacks. Furthermore, we find such poli-
cies in more than 50% of the top 500 websites, examined both
globally and per-country. Additionally, we examine local sets of
e-shopping websites and find that up to 83% implement weak poli-
cies. Interestingly, we observe that the less popular a website is,
the higher the probability that it will have a weak policy. Com-
pared to previous studies there is an obvious increasing trend in the
adoption of RIA but, at the same time, a decreasing trend regarding
secure implementations. Through a proof-of-concept attack imple-
mentation and a number of real-world examples, we highlight the
security impacts of these policy misconfigurations.

1. INTRODUCTION

Adobe Flash ! and Microsoft Silverlight ? are two popular plat-
forms for serving Rich Internet Applications [4] through the web.
According to the latest statistics [1, 3], 85 out of the top 100 web-
sites serve Flash objects (or Flash movies) to their visitors, 98%
of which have the ability to render such objects (53.5% for Sil-
verlight). Such applications combine a graphics library and a script-
like API to add functionality, content or multimedia features to a

"http://www.adobe.com/flashplatform/
Zhttp://www.silverlight.net

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

EUROSEC’11, 10-APR-2011, Salzburg, Austria

Copyright 2011 ACM 978-1-4503-0613-3/11/04 ...$10.00.

website. These APIs enable the developer, among other things,
to fetch content from remote web locations (e.g. XML data such
as RSS feeds, or communicate with a database via a remote PHP
page). Flash applications are packaged into objects, embedded
in an HTML page and later downloaded and executed within the
user’s browser.

The ability of RIA platforms for remote content retrieval aims
for service enrichment. However, this also reinstates the prob-
lem of cross-domain access, i.e., enabling a flash object hosted
by domainA to access data residing in domainB. While defense
mechanisms have been successfully deployed for traditional web
technologies [7], these solutions cannot be applied in the case of
RIA platforms. In lieu of these techniques, cross-domain policies
were introduced to restrict Flash objects from accessing arbitrary
network destinations. Cross-domain policies are XML files that re-
side on the server-side and allow per-domain access to Flash object
requests on an opt-in basis. Due to the popularity of Adobe Flash
for delivering rich content to web users, such policies are often de-
ployed. However, those who implement them do not always fully
understand them or are unaware of their security implications.

A website’s cross-domain policy with weak security properties
may permit Flash objects from arbitrary locations to access its con-
tents. Consider an attack scenario where an attacker crafts a ma-
licious Flash object and places it under http://attacker.com/
malicious.swf. Once victims visit the malicious URL, the ob-
ject is loaded in their web browsers and enables the attacker to
place arbitrary HTTP requests towards the site with the weak se-
curity policy. Since the malicious Flash object is loaded inside
the victim’s browser, any HTTP requests it makes are placed in
the network from the victim’s computer. Furthermore, the victim’s
browser appends the victim’s credentials (e.g. HTTP cookies) to
those requests. So, for instance, an attacker can request http:
//shopping.com/cart and receive the contents of the victim’s
shopping cart, if she is logged in shopping.com. Even worse, an
attacker can place a request purchasing an item, using the victim’s
credit card which is stored in her account.

This paper provides awareness on the use of Adobe Flash and
Microsoft Silverlight cross-domain policies. We conduct an ex-
tensive study across popular websites and present our findings re-
garding the adoption of such policies and their security. We provide
real-world examples of policy weaknesses that we came across dur-
ing our study. We present a proof-of-concept implementation of
an end-to-end attack platform that can exploit such policy vulner-
abilities. Finally, we discuss possible approaches to mitigate the
problem. The contributions of our work can be summarized as fol-
lows:

e We provide vulnerability awareness regarding the use of cross-

domain Flash and Silverlight web policies.

1 <?xml version="1.0"?>
2 | <!DOCTYPE cross—-domain-policy SYSTEM "http://www.
3 macromedia.com/xml/dtds/cross—-domain-policy.dtd">
4 | <cross—-domain-policy>
5 <allow-access-from domain="subl.domainA.com"/>
6 <allow-access-from domain="domainC.com"/>
7 | </cross-domain-policy>
Listing 1: A valid cross-domain policy
1 <allow-access—from domain="x*.subl.domainA.com"/>
2 <allow-access—from domain="x*.domainC.com"/>
3 <allow-access—from domain="x*"/>

Listing 2: Weak directives in a cross-domain policy

e We present an extensive study on the deployment and security
of Flash and Silverlight cross-domain policy files. Our results
reveal more than 6.500 websites with weak policies and, thus,
vulnerable to attacks.

e We present proof-of-concept implementations of attack sce-
narios that target weak cross-domain policies for Flash and
Silverlight enabled websites.

2. BACKGROUND

This section provides background information on the internals of
the Adobe Flash cross-domain policy and describes in detail several
types of weak implementations. Microsoft Silverlight employs an
almost identical policy system.

2.1 Adobe Flash cross-domain policy

For security reasons, an Adobe Flash object rendered in a web
browser, via the Adobe Flash Player plugin, is not allowed to ac-
cess data that resides outside the web domain on which the object
is hosted. The basis of domain comparison is the domain name,
not an IP address. The two domains must be an exact match,
so a comparison of http://www.domainA.com with http://

images.domainA.com,Orhttps://www.domainA.com will fail.

The Flash player is responsible for enforcing this security measure.
However, there are cases where access to data in a different do-
main is required. For that matter, the Flash player is able to process
a white-list-oriented XML policy file, named crossdomain.xml,
hosted on the remote domain from which data is requested.

In detail, once a Flash object, located at domainA, attempts to
access remote domainB, the Flash player, which is responsible for
rendering the object, contacts the host computer of domainB and
requests the policy file. If the file is unavailable, the Flash player
terminates the network access attempt. If a policy has been defined
by the administrator of domainB, then the Flash player determines
whether it explicitly allows access from the Flash object’s own do-
main. If access has been authorized, the player places the network
request in question, and returns the response to the calling Flash
Object, running inside the user’s web browser. Otherwise the net-
work access attempt is terminated and data requests are never is-
sued. Listing 1 shows an example of a well-defined cross-domain
policy file from domainA. Only requests from subl.domainA.com
(line 4) and domainC.com (line 5) are allowed.

To extend the previous scenario, one can consider the case where
domainA has several subdomains that host Flash objects requiring
access to content hosted on domainB. To enable such access, the
policy file under domainB must contain multiple “allow-access-
from” directives, one for each subdomain. However, it is also pos-

sible to use the wildcard character to match, and therefore include,
any subdomain of domainA or simply any domain. The latter prac-
tice may seem more convenient and with the least administrative
overhead in terms of maintaining the list of cooperating domains.
However, problems arise when a policy is not tailored to a specific
domain’s design and structure, allowing an adversary to take ad-
vantage of it.

2.2 Weak Policy Implementations

In this section we present the weak policy implementations and
explain the potential attacks they can lead to.

Any sub-domain weakness. The use of a wildcard to match any
subdomain might create a potential security weakness. If users are
able to upload content to a specific subdomain, an attacker could
upload a Flash object of his own and, by running arbitrary code,
be able to place requests towards the target subdomain and receive
the responses. Assuming the target subdomain requires some form
of authentication in order to accept requests and not all users have
such, a malicious user could lure an authenticated user (victim) to
visit his malicious Flash object. Once the malicious Flash object is
loaded in the victim’s browser, any requests towards the target sub-
domain will carry the victim’s credentials, contained in an HTTP
cookie or a session variable, and will originate from the victim’s IP
address. Thus, the adversary is able to launch a Cross-Site Request
Forgery (CSRF) attack as CSRF defense mechanisms [7] are ren-
dered ineffective. Lines 1 and 2 from Listing 2 are examples of the
sub-domain weakness.

Any domain weakness. In the case where multiple different do-
mains require access to data on domainA, a policy will have to be
defined with multiple “allow-access-from” directives, one for each
distinct domain. However, a single directive can be defined, us-
ing the wildcard to match against domains. This means that not
only the previous set of domains will gain access, but any domain,
e.g. http://attacker.com. This is the most dangerous type of
weakness because it allows the malicious Flash object to be hosted
anywhere, from the attacker’s home computer to an arbitrary free-
hosting service on the web. While in the previous situation the
attacker must be able to upload something to a white-listed subdo-
main of domainA, which may not always be possible, in this case
she is not restricted in any way. Flickr, a major image and video
hosting website, had such a weak policy implementation . Line 3
from Listing 2 is an example of the any-domain weakness.

Throughout this paper, unless otherwise specified, we use the
term “weak” to describe only policies with any-domain, unrestricted-
access directives, as they are the most dangerous and always ex-
ploitable. This places a lower limit to the count of vulnerable sites
as it does not include the exploitable any-subdomain policies, the
exact number of which is unknown due to their case-specific nature.

3. DATA COLLECTION

To examine both the policy usage and security issues of cross-
domain policies we created a number of diverse (both geograph-
ically and content-wise) lists of websites. Our first and larger list
includes the 100K most popular websites, according to Alexa *. We
believe this to represent a complete list of both popular and not so
popular websites. Furthermore, we compiled a list with the web-
sites of the Fortune 500 companies to fill our global view set. For
our geographically diverse set, formed by popular sites in a more
local scale, we used lists with the S00 most popular websites, again
according to Alexa, in the U.S.A, Great Britain, Germany, France

*http://blog.monstuff.com/archives/000302.html
*http://www.alexa.com/

Top100 Adoption 75%
Top100K Adoption 14% 86% |

Top100 Security -

Topl00K Security 52% 48%
T T T 1
0% 25% 50% 75% 100%
B Some Policy No Policy [0 Domain Restricted B Any Domain

Figure 1: Global Alexa Top100, Top100K

100 -
% of sites having policies up to rank i

80—\ A % of weak policies up to rank i

60 -

40 -

20 T ey N

0- LT | | | ‘
0 10 100 1K 10K 100K

Figure 2: Correlation of policy adoption and security with site
popularity rank.

and Greece. Additionally, we have used a list with 500 of the most
popular Greek e-shopping websites to form a set of content-specific
sites in our country.

For each domain name in those lists we placed the following re-
quests: httpls]://domain/crossdomain.xml and http[s]:
//www.domain/crossdomain.xml to download the policy file
for Adobe Flash if one existed. A respective batch of requests
was also sent to retrieve the policy file for Microsoft Silverlight.
We subsequently examined those XML files and identified the do-
mains that did return a valid policy. Furthermore, we evaluated the
valid policies to automatically identify both types of weak imple-
mentations described in section 2.2. Our findings are presented in
the following section. We focus on the findings from the http:
//www .domain requests as they represent the most common case
and their differences with the results of the other requests are minor.

4. POLICY ADOPTION AND SECURITY
4.1 Global Penetration

We first examine the cross domain policy adoption at a global
scale. Recall that the existence of a crossdomain policy file does not
state whether a website supports RIA plugins or not, but whether
a website allows RIA plugins to request and receive data from it.
Figure 1 (top) presents our findings for the Top 100 and Top 100K
websites, while Table 1 summarizes our findings for all sub-classes
examined. We can see that the penetration ratio of domain poli-
cies diminishes as the total number of examined sites grows. For
example, 75 out of the Top 100 sites serve a policy file, while this
percentage drops to only 14% for the Top 100K sites. Furthermore,
as we see in the bottom bars of Figure 1, security awareness also
diminishes. That is, top popular sites seem to restrict their policies
more carefully than not so popular sites — only 16% are weak cases
for the Top 100 vs. almost 50% for the Top 100K sites.

To further understand the evolution of weak implementations as
the site’s rank moves away from the top, Figure 2 plots the cumu-
lative percentage of weak policies in relation to the site’s rank. We
can observe a clear trend here; the less popular the site is, the higher
the probability the website will have implemented a weak policy.

2006 Adoption 36% 64% |
2011 Adoption 62%

2006 Security
2011 Security

T T T 1
0% 25% 50% 75% 100%
B Some Policy No Policy [0 Domain Restricted B Any Domain

Figure 3: Alexa Top100 US

2006 Adoption 4 92%
2011 Adoption 16% 84%

T T T 1
0% 25% 50% 75% 100%
B Some Policy No Policy [0 Domain Restricted B Any Domain

2006 Security
2011 Security

Figure 4: Fortune500

4.2 Country Penetration

We continue our examination by looking at the cross-domain
policy adoption at a more local scale. To do so, we study the
policy penetration for the U.S.A. and a number of major Euro-
pean countries. Table 2 summarizes our results. Countries like the
U.S.A. with a high adoption rate (57%) of cross-domain policies
have fewer weak policies (28% of deployed policies) than countries
like Greece where the adoption rate is much lower (36%) but there
are more weak policies (39%).This indicates that countries where
such policies are more widely used are also more security-aware.

In a similar study, in 2006, Grossman [2] examined the cross-
domain policy files for the top 100 sites in the U.S.A., according
to Alexa, and the websites of the Fortune 500 list of companies.
With a penetration of 36% and 8% respectively, Grossman found
6% and 2% to be wildcarded for any-domain. In January 2011, we
re-examined the two lists. Figure 3 presents our findings along with
the findings of the Grossman study. We see an increase in the pen-
etration of cross-domain policies in 2011. More than 60% of the
sites implement a cross-domain policy in the Alexa U.S.A top 100,
an increase of almost 173% since 2006. Alarmingly, the number of
weak policy deployments has also increased to 21%, exhibiting a
growth of 124% since 2006. This indicates that, since 2006, more
sites have adopted cross-domain policies, which is not surprising
considering the capabilities of Flash technology. What is surprising
though, is that the percentage of sites implementing weak policies
has also increased and its increase is almost 70% of the growth rate
of Flash technology adoption. In the case of the Fortune 500 sites,
the penetration of such policies has doubled while the ratio of weak
implementations has remained the same. The two groups of sites
have a dice coefficient of 0.14, indicating two very different sets;
the first one is more dynamic in terms of Flash technology adop-
tion than the latter and appears to have more secure policies. At
the same time, however, it also exhibits an increasing trend towards
weak implementations.

4.3 Category Penetration

Besides examining local sites in each country, we examine spe-
cific site categories as provided by Alexa. In detail, we inspect
the 500 most popular sites in a series of categories. Table 3 sum-

Adobe Flash Microsoft Silverlight
None Some Policy None Some Policy
Tier Restricted || Unrestricted Restricted || Unrestricted
Alexa Top 100 25% 84% 16% 97% 67% 33%
Alexa Top 1K 48% 71% 29% 98% 63% 37%
Alexa Top 10K 71% 58% 42% 99% 38% 62%
Alexa Top 100K 86% 52% 48% 99% 22% 78%
Fortune 500 84% 75% 25% - - -

Table 1: Adobe Flash Cross-domain Policy and Microsoft Silverlight Client-access Policy adoption and security evaluation for the

100K most popular sites according to Alexa.

Adobe Flash Microsoft Silverlight
None Some Policy None Some Policy
Country Restricted || Unrestricted Restricted || Unrestricted

U.S.A. 43% 72% 28% 97% 69% 31%
Germany 55% 63% 37% 99% 50% 50%
Great Britain 58% 66% 34% 98% 89% 11%
France 63% 62% 38% 99% 75% 25%
Greece 64% 61% 39% 99% 50% 50%

Table 2: Adobe Flash Cross-domain Policy and Microsoft Silverlight Client-access Policy adoption and security evaluation for the
500 most popular sites in the U.S.A. and major European countries.

Adobe Flash
None Some Policy

Category Restricted | Unrestricted
Sports 54% 49% 51%
Health 85% 54% 46%
Society 75% 55% 45%
Adult 84% 60% 40%
Arts 52% 63% 37%
News 62% 64% 36%
Science 83% 66% 34%
Recreation 67% 68% 32%
Home 82% 69% 31%
Computers 68% 72% 28%
Shopping 68% 83% 17%

Table 3: Policy adoption and security evaluation for the top-500
sites in a series of content categories.

marizes our results. Cross-domain policies are adopted in 16% to
46% of the sites, depending on category. We can see that shopping
sites are more aware of the security implications, with only 17%
having unrestricted policies. All other categories have unrestricted
policies in a larger percentage, ranging from 28% and up to 51%.
We also examined the sites for Microsoft Silverlight, but omit the
results due to the small adoption rate (less than 2% in all cases) and
the lack of space.

Greek E-Shopping Sites: To examine both local and category
specific websites we assembled a set with 500 popular Greek e-
shopping sites by crawling the catalog of Skroutz >, a popular Greek
e-shopping search engine. Although, the adoption of cross-domain
policy files is rather low (2.5%), the percentage of any-domain,
unrestricted-access policies reaches an impressive 83.3%. Consid-
ering the nature of these sites (i.e., online shopping involving user
accounts, personal and financial details), one can imagine the im-
pact of an attack against their users.

4.4 Administrative Overhead

In the previous sections we have seen that an important number
of cross-domain policies are vulnerable to attacks. In this section

Shttp://www.skroutz.gr

% of policy files

50 100

of directives in policy file

500

Figure 5: CDF of the number of directives (length) per cross-
domain policy for top 100K global sites.

we examine whether a high administrative overhead is required in
order to create and manage these policy files. To this extent, we
measure the number of directives in each policy file found in the
top 100K sites in the global set of Alexa. Without the use of wild-
cards for sub-domain or any-domain white-listing, each domain
to be allowed access must be declared in a directive of its own.
Figure 5 plots the Cumulative Distribution Function (CDF) of the
length (number of directives) of the policy files. One may notice
that 10% of those policies has more than 10 directives, 5% has
more than 20 and there are sites that span over 100 or even 400 di-
rectives. Such long policies can prove hard to effectively maintain
and could contain weaknesses that may go unnoticed.

S. ATTACKS

In the previous section we showed that the percentages of cross-
domain adoption and weaknesses are high among the web sites. In
this section we present two attack scenarios that leverage a weak
cross-domain policy and describe how they can be used for mali-
cious purposes. Furthermore, we present a proof-of-concept imple-
mentation for exploiting such weaknesses and provide the technical
details. Each scenario has been tested with at least one real case of
a weak policy found during our experiments in section 4.

http:/fattacker.com/

o 9

malicious.swf crossdomain.xmi Y
1)' Load <cross-domain-policy>
malicious.swf <allow-access-from domain="*"/>
HTTP _<fcross-domain-policy=> /f
over (2) socketf) to) =
SeCks attacker:port (4) HTTP GET
- http:/fweak-site.com/
(3) request crossdomain.xml,
weak-site.com Index.html -
—_— —— \
S (6) response hitp:/weak-site.com
Atéackers weak-site.com/ ik P
erver i ot
index.html victim (5) HTTP 200 OK
-+
Figure 6: Attack Proxy Design
1 <allow-access—from domain="attacker.com"
2 to-ports="8080"/>

Listing 3: Cross-domain Policy enabling socket connections
from the victim

5.1 Setting up the Attack

Prior to discussing the actual attack we first describe the steps
needed by the attacker in order to use a Flash object as an attack
proxy. The whole scenario is depicted in Figure 6. Initially, the
attacker tricks her victim into loading http://attacker.com/
malicious.swf which is a carefully crafted Adobe Flash object.
This object can be masked as a movie, animation or game and
thereby conceal its true purpose, or can be completely invisible
(e.g., zero dimensions on an HTML page) and accessed as part
of a perfectly legitimate site via an iframe in the form of an ad-
vertisement. As soon as malicious.swf loads, it can execute ar-
bitrary code and open a standard network socket with a malicious
server running on the attacker’s home computer. Socket connec-
tions to network destinations are governed by the same rules as
cross-domain site access but this is a server the attacker controls.
For that matter, the Flash player inside the victim’s browser issues
a cross-domain access request towards the malicious server, which
in return provides the necessary cross-domain policy (Listing 3).

As soon as the victim’s Flash player examines the policy, it estab-
lishes a network connection with the attacker’s server. Through that
connection, malicious.swf receives control messages describing
the URLs for which it will issue HTTP GET requests (steps 2-3
in Figure 6). Since, malicious.swf is executed inside the victim’s
web browser, the victim is the one who places those HTTP requests
on the network (step 4). As soon as the request is served back to
malicious.swf (step 5), it forwards the received content through
the network socket back to the attacker’s control server (step 6).
At this point the attacker receives the response to an HTTP request
that the victim has placed on his behalf.

The set of URLSs the attacker is able to instruct the victim to fetch
on his behalf, is dictated by the set of sites on the web with weak
cross-domain policies. While this may seem as a serious restriction
on the attacker’s request-issuing capabilities, in section 4 we found
more than 6.5K sites containing weak policies. Furthermore, in
special categories such as Greek e-shopping sites, more than 80%
of those that have a deployed policy are vulnerable to this attack.

Steps 4 and 5 can differ, depending on the actual attack carried
out. In the next sections we describe two possible attack cases.

Both cases were implemented and tested in real world scenarios,
using a proof-of-concept deployment of the Figure 6 components.
Section 5.4 describes real-world examples found during our study.

5.2 Abusing cookies and credentials

In the first attack scenario, the attacker abuses the victim’s web
credentials when accessing sites with weak policies. By instruct-
ing malicious.swf to issue an HTTP request towards http://
site.requiring.login.com, the victim’s browser will in fact
send along any cookies it has, if the victim is already authenti-
cated for that site (e.g. victim’s web mail, e-shopping account). So,
for instance, the attacker could instruct the victim to fetch https:
//mail.webmail.com and receive a response with the victim’s
web mailbox contents or https://shopping-site.com/cart?
action=add&item=foo to add an item to the basket. Some sites
employ Cross-site Request Forgery (CSRF) tokens which are, in
essence, random nonces returned to the (legitimate) user upon log-
ging in to a site. Thus, any attacker cannot issue a direct request
without knowing the nonce. However, as with login cookies, CSRF
tokens are also appended by the victim’s browser in the upstream
path from malicious.swt to the destination site or can be read
from the HTTP headers included in the site’s responses. Let it be
noted that such requests are not recorded in the browsing history
and don’t leave other evidence, such as cache files, on the victim’s
computer.

5.3 Laundering web attacks

An attacker can launder various types of attacks, such as XSS
and SQL injections, by issuing them through the victim’s browser.
The attacker’s target site must have a weak policy so that the victim
can issue the malicious requests even if the attacker does not re-
quire the receipt of HTTP responses. Furthermore, sites with weak
security policies are also likely to be vulnerable to other attacks.

On a different note, an attacker could frame the victim by associ-
ating him with frowned-upon activity. For instance, he could abuse
the victim’s credentials for posting offending messages on a web
discussion group, with a weak policy, that the victim is a member
of or place network requests towards controversial content through
the victim’s browser.

5.4 Examples

Here we discuss two real-world examples of weakly implemented
cross-domain policies we came across during our experiments.

Global Telecommunications Company. We have identified the
case of a major mobile telecommunications carrier’s site in Spain,
in which country it holds more than 30% of the market share. The
carrier offers its subscribers the ability to manage their account on-
line, via a portal located under the carrier’s official localized do-
main. However, the domain implements a weak policy, allowing
access from any Flash object located under any foreign domain. As
a result, using the attack platform presented above, one could gain
unauthorized access to the information of the portal’s users. This
portal allows subscribers to check, among other things, their call
log, billing and consumption information.

Major E-Shopping Site. We have also identified the case of
a major e-shopping site located in Greece, which also holds more
than 30% of the market share. The site’s weak cross-domain policy
gives the attacker unrestricted access to the victim’s account, in-
cluding the shopping cart and personal information. By exploiting
such access attackers can review the victim’s history of purchases
and extract sensitive information such as the user’s name, address
and phone number. Moreover, the attacker can also place new or-
ders or add/remove items while the victim is placing his own order.

6. RELATED WORK

Balduzzi et al. [6] conducted a large-scale study to assess the
extent of websites that are vulnerable to HTTP Parameter Pollu-
tion (HPP) attacks. Their vulnerability assessment study deter-
mined how 5,000 popular websites behaved upon receiving dupli-
cate HTTP parameters. Their results showed that 30% of the web-
sites contained vulnerable parameters. Also, 14% of the sites were
susceptible to HPP attacks that allowed the modification of the web
application in a way that enabled a series of client-side attacks. As
the authors report, these vulnerabilities are due to developers not
being aware of the problem or not taking it seriously. This also
seems to be the case with the flash cross-domain policy vulnerabil-
ity we explored in our study, as many developers are not aware of
the security implications.

Jackson et al. [9] focus on ways to deal with DNS rebinding at-
tacks. In such an attack, the same-origin policy is subverted by
manipulating the IP addresses the attacker’s host names are bound
to. In a DNS rebinding attack against Flash cross-domain policy
checking, the attacker responds to the user’s initial DNS query with
the IP address of the attacker’s server, using a short TTL. That
way, site.com is temporarily bounded to the IP address of the
attacker’s server so that a spoofed crossdomain.xml is provided
from there and, as the TTL will expire, a subsequent DNS request
for site.com will bind to the IP address of the actual server, there-
fore providing access to the contents of the site.

In [8, 5] the authors expose the use of transparent proxies in net-
works as a mechanism to break the same-origin restriction imposed
by the Adobe Flash player. They demonstrate that such proxy
caches may be poisoned as a direct result of their confusion regard-
ing the handling of cases, where the HTTP host header and the
destination IP address of the intercepted connection do not match.

7. DISCUSSION

In this section, we discuss possible mitigation techniques for the
security issues arising from the weak cross-domain policies high-
lighted in the previous sections.

A first step in mitigating such weaknesses, is to educate site de-
velopers on the security aspects of weak cross-domain access poli-
cies for RIA applications. Beside the common sense of not having
a policy when it is not needed, site operators should also be mo-
tivated, though awareness, to correctly implement policies when
needed. Nonetheless, while policy files work well when correctly
implemented, there are cases where that is hard to do or not pos-
sible at all. For those cases, we describe ways to avoid creating
security vulnerabilities.

Domain Separation. Consider a site www.domain.com which
wants to allow access to its HTTP REST API from anywhere («).
A solution is to move the API to api .domain.com(with a domain=
"«" policy) and restrict or completely remove the policy file for
the main domain. This way, arbitrary user Flash applications can
place requests towards the API from anywhere, but cannot access
the site itself. As a result, the site is isolated from CSRF requests
through Flash objects and the API-hosting domain can be more
easily monitored and managed. This is the solution implemented
by Flickr, which moved flickr.com/api with an allow-from-
anywhere policy to api.flickr.com and removed the policy file
entirely from the www-prefixed domain. This can also be applied
in cases when user-generated content is hosted. Such files can be
placed on a separate domain that is not included in the policy file.

Embedded Sources. If a site wants to distribute some of its con-
tent to a large (or unknown) number of other sites, it can provide
embeddable content hosted on its own domain. This way, people

can pull specific pieces of content from the site without being al-
lowed unrestricted access to its pages. This technique is followed
by YouTube, which doesn’t allow access to youtube . com from ar-
bitrary destinations but at the same time allows anyone to include
videos in their own sites.

8. CONCLUSION

In this paper we conducted an extensive study regarding the adop-
tion and implementation of the cross-domain policy for RIA object
access. When the policy is not specifically crafted to match a web-
site’s design and structure, an adversary can leverage the weak im-
plementation to deploy various attacks targeting the site’s users. We
found that 14% of the top 100K sites have adopted cross-domain
policy files, and almost 50% of them have a weak implementation.
Furthermore, the top 500 sites we examined from a country-level
point of view present an adoption rate of 50%, with weak imple-
mentation percentages ranging from 28% to 39%. When exam-
ining top e-shopping websites in various countries, we found up
to 83% of them implementing a weak policy. We also presented
real world examples of weak policy implementations and attacks
that can be carried out against them. Finally, our proof-of-concept
attack implementation highlighted the security implications of mis-
configured cross-domain access policies.

Acknowledgments

The research leading to these results has received funding from the
European Union Seventh Framework Programme (FP7/2007-2013)
under grant agreement 257007. This work is supported in part by
Herakeitos II PhD Scholarship in the area of "Internet traffic clas-
sification”. We would like to thank the anonymous reviewers for
their valuable comments. The authors are also with the University
of Crete.

9. REFERENCES

[1] Adobe Flash Platform Pervasiveness.
http://www.adobe.com/flashplatform/statistics/.
[2] Jeremiah Grossman - crossdomain.xml statistics.
http://jeremiahgrossman.blogspot.com/2006/10/
crossdomainxml-statistics.html.
[3] Rich Internet Application Market Share. http://www.
statowl.com/custom_ria_market_penetration.php.
[4] wikipedia.org - Rich Internet Application. http://en.
wikipedia.org/wiki/Rich_Internet_application
[5] R. Auger. Socket capable browser plugins result in transparent
proxy abuse, 2010.
http://www.thesecuritypractice.com/the_
security_practice/TransparentProxyAbuse.pdf.
[6] M. Balduzzi, C. T. Gimenez, D. Balzarotti, and E. Kirda.
Automated discovery of parameter pollution vulnerabilities in
web applications. In Proceedings of the 18th Network and
Distributed System Security Symposium, 201 1.
A. Barth, C. Jackson, and J. C. Mitchell. Robust defenses for
cross-site request forgery. In Proceedings of the 15th ACM
Conference on Computer and Communications Security, 2008.
[8] L.-S. Huang, E. Y. Chen, A. Barth, E. Rescorla, and
C. Jackson. Transparent proxies: Threat or menace? http:
//www.adambarth.com/experimental /websocket.pdf.
[9] C. Jackson, A. Barth, A. Bortz, W. Shao, and D. Boneh.
Protecting browsers from dns rebinding attacks. In
Proceedings of 14th ACM conference on Computer and
Communications Security, 2008.

[7

—

