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Clients securing their traffic to a server

• TLS unavailable at the server 

• Minimize the unencrypted network path on the Internet 

• Without the server’s participation 

• Not a substitute for TLS!
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Limited adoption of transport layer security

• Top 10K sites (Alexa) 
• Only 32% support HTTPS 
• Only 15% redirect HTTP to HTTPS
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HTTPS response HTTPS? % #

1 Error (Conn. refused) No 21.4 2144
2 Error (Invalid cert.) No 22.1 2205
3 Error (HTTP 4xx 5xx) No 2.9 292
4 HTTPS downgraded No 21.5 2152

Total No 67.9 6793
5 OK Yes 17.0 1695
6 OK (HTTP upgraded) Yes 15.1 1512

Total Yes 32.1 3207

Table 2: HTTPS capability of 10K popular domains.
Only 32.1% o↵er transport layer security.

2.1 HTTPS Adoption
To quantify the extent to which HTTPS has been adopted

by Internet sites we evaluated 10,000 popular web domains
according to Alexa.We focused on the .com, .org and .net

top-level domains that resolved to US ASes. We verified
the TLS certificates presented by these domains using the
certificate authorities trusted by Mozilla. Table 2 presents
our findings. Our HTTPS connection attempts were re-
fused by 21.4% of the servers. Even worse, 21.5% redirected
our HTTPS requests to HTTP. Additionally, 22.1% of the
servers returned a TLS certificate which failed verification.
Overall we failed to contact almost 70% over HTTPS.

The few sites supporting both HTTP and HTTPS need to
make sure their visitors reach their secure endpoint. Search
engine results and links from other sites might steer users to-
wards the insecure HTTP. Also, if users omit the https://

scheme when typing in the address bar, their browser will de-
fault to the insecure http://. Unfortunately only 47% of the
HTTPS-capable sites (15.1% overall) redirect their visitors
to HTTPS. For the majority of HTTPS-capable sites users
will continue to visit them over HTTP. To make matters
worse an active network attacker can prevent the redirection
to HTTPS from taking place by replacing https:// URLs
with http:// in the server’s responses in flight. Some ISPs
are known to remove the STARTTLS string from SMTP
responses serving a similar purpose for e-mail. The use of
the Strict-Transport-Security HTTP header can miti-
gate this by instructing the user agent to place future re-
quests exclusively over HTTPS. We evaluated the use of
HSTS among servers redirecting visitors to HTTPS and
found that only 25% return a valid policy. Overall out of
10,000 popular web servers we find that only 3,207 (32.1%)
support HTTPS and just 420 (4.2%) support HTTPS with
an HSTS policy. Note that just 56 domains are found in the
hard-coded HSTS preload list of Chrome and Firefox.

2.2 Web service collocation
To study the geography of Internet services we mapped

the web sites from our data set to their respective ASes. A
site may depend on more than one domains for resources
such as scripts and images so we used a web browser to fully
render the home page of each domain in our data set and
recorded the destinations involved. We did not log HTTPS
requests. We consider the home page of a domain to be
the content received when visiting the exact domain or the
standard www subdomain.

We visited the home pages of 9,944 domains from out data
set. We excluded the 56 HTTPS-capable domains found
in the HSTS preload list of Chrome. Ultimately we made

% Autonomous System Name

17.1 Akamai Technologies, Inc.
13.9 Amazon.com, Inc.
11.4 CloudFlare, Inc.
9.9 Google Inc.
3.7 EdgeCast Networks, Inc.
2.9 SoftLayer Technologies Inc.
2.1 Fastly
1.7 Tinet SpA
1.6 Internap Network Services Corp.
1.5 Rackspace Hosting

65.8 Total

Table 3: Top 10 most frequent ASes hosting sites.

701,929 HTTP requests towards 34,893 unique domains to
fully render the home pages. We subsequently resolved the
domain names to their respective IP addresses and mapped
them to ASes based on BGP prefix announcements collected
by APNIC. Table 3 presents the top 10 most frequent ASes
hosting the web servers involved in our 701,929 HTTP re-
quests. The top 10 most frequent ASes host servers that
receive 65.8% of all HTTP requests made.
Web servers hosted by Google present an interesting case.

22% of the HTTP requests made to Google servers target
the google-analyics.com and 13% the doubleclick.net

domain. As evidence has shown [8] passive network ad-
versaries colluding with Internet backbone providers collect
identifiers involved in requests to these domains to track
users. It is also interesting that to reach Google our requests
had to travel through two di↵erent tier 1 Internet backbone
providers. The requests were made from a residential ISP
and a university network in the US. In contrast, using our
proposal (TNT) we can reach Google in a single network
hop without exposing tra�c to backbone providers.
To summarize, web services are clustered in few networks

owned by cloud and other infrastructure-as-a-service (IaaS)
providers. If end-to-end security with these services is not
available, the next best thing is for users to establish a secure
link to these networks and route tra�c through it. Cloud
providers make this approach practical as users can deploy
their own virtual machines in the same networks.

3. RELATED WORK
To limit the exposure of their plain-text tra�c some users

connect to Virtual Private Network (VPN) servers o↵ering
encrypted tunnels between the client’s device and some fixed
point in the Internet beyond which tra�c is unencrypted.
While such services protect from a local network attacker,
exposure to network adversaries might even increase as op-
posed to a direct route without the VPN service. Since
VPN gateways are not optimized to be close to web servers
user tra�c might traverse more autonomous systems or even
cross national borders, e.g., from a US gateway to a Euro-
pean server. Even VPNs with diverse gateways employ them
without considering the destination of tra�c.
Tor [15] is an anonymity network where tra�c is encap-

sulated in layers of encryption and usually travels between
three nodes before the original TCP/UDP packet exits to
the Internet. By design Tor attempts no correlation be-
tween the exit of an encrypted circuit and the destination
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Imperfect deployment of TLS

• Implementation vulnerabilities threaten user security 

• Users cannot rely on websites to patch themselves up 

• 45% of servers affected by FREAK vulnerable 9 months later 

• DROWN affects a TLS 1.2 client because server supports SSLv2
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Short network paths minimize the attack surface

• kontaxis@austria$ traceroute www.nytimes.com 

1. EDIS GmbH (AT) 

2. RETN Limited (UK) 

3. NTT America, Inc. (US) 

4. Fastly (US) 

• kontaxis@ec2-us-east-1$ traceroute www.nytimes.com 

1. Amazon Inc. (US) 

2. Fastly (US)
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Web services are clustered in the cloud

• Cloud networks host the majority of web services 
• Excellent vantage point to browse the web 
• Users have access to Virtual Machines in the cloud
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HTTPS response HTTPS? % #

1 Error (Conn. refused) No 21.4 2144
2 Error (Invalid cert.) No 22.1 2205
3 Error (HTTP 4xx 5xx) No 2.9 292
4 HTTPS downgraded No 21.5 2152

Total No 67.9 6793
5 OK Yes 17.0 1695
6 OK (HTTP upgraded) Yes 15.1 1512

Total Yes 32.1 3207

Table 2: HTTPS capability of 10K popular domains.
Only 32.1% o↵er transport layer security.

2.1 HTTPS Adoption
To quantify the extent to which HTTPS has been adopted

by Internet sites we evaluated 10,000 popular web domains
according to Alexa.We focused on the .com, .org and .net

top-level domains that resolved to US ASes. We verified
the TLS certificates presented by these domains using the
certificate authorities trusted by Mozilla. Table 2 presents
our findings. Our HTTPS connection attempts were re-
fused by 21.4% of the servers. Even worse, 21.5% redirected
our HTTPS requests to HTTP. Additionally, 22.1% of the
servers returned a TLS certificate which failed verification.
Overall we failed to contact almost 70% over HTTPS.

The few sites supporting both HTTP and HTTPS need to
make sure their visitors reach their secure endpoint. Search
engine results and links from other sites might steer users to-
wards the insecure HTTP. Also, if users omit the https://

scheme when typing in the address bar, their browser will de-
fault to the insecure http://. Unfortunately only 47% of the
HTTPS-capable sites (15.1% overall) redirect their visitors
to HTTPS. For the majority of HTTPS-capable sites users
will continue to visit them over HTTP. To make matters
worse an active network attacker can prevent the redirection
to HTTPS from taking place by replacing https:// URLs
with http:// in the server’s responses in flight. Some ISPs
are known to remove the STARTTLS string from SMTP
responses serving a similar purpose for e-mail. The use of
the Strict-Transport-Security HTTP header can miti-
gate this by instructing the user agent to place future re-
quests exclusively over HTTPS. We evaluated the use of
HSTS among servers redirecting visitors to HTTPS and
found that only 25% return a valid policy. Overall out of
10,000 popular web servers we find that only 3,207 (32.1%)
support HTTPS and just 420 (4.2%) support HTTPS with
an HSTS policy. Note that just 56 domains are found in the
hard-coded HSTS preload list of Chrome and Firefox.

2.2 Web service collocation
To study the geography of Internet services we mapped

the web sites from our data set to their respective ASes. A
site may depend on more than one domains for resources
such as scripts and images so we used a web browser to fully
render the home page of each domain in our data set and
recorded the destinations involved. We did not log HTTPS
requests. We consider the home page of a domain to be
the content received when visiting the exact domain or the
standard www subdomain.

We visited the home pages of 9,944 domains from out data
set. We excluded the 56 HTTPS-capable domains found
in the HSTS preload list of Chrome. Ultimately we made
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Table 3: Top 10 most frequent ASes hosting sites.

701,929 HTTP requests towards 34,893 unique domains to
fully render the home pages. We subsequently resolved the
domain names to their respective IP addresses and mapped
them to ASes based on BGP prefix announcements collected
by APNIC. Table 3 presents the top 10 most frequent ASes
hosting the web servers involved in our 701,929 HTTP re-
quests. The top 10 most frequent ASes host servers that
receive 65.8% of all HTTP requests made.
Web servers hosted by Google present an interesting case.

22% of the HTTP requests made to Google servers target
the google-analyics.com and 13% the doubleclick.net

domain. As evidence has shown [8] passive network ad-
versaries colluding with Internet backbone providers collect
identifiers involved in requests to these domains to track
users. It is also interesting that to reach Google our requests
had to travel through two di↵erent tier 1 Internet backbone
providers. The requests were made from a residential ISP
and a university network in the US. In contrast, using our
proposal (TNT) we can reach Google in a single network
hop without exposing tra�c to backbone providers.
To summarize, web services are clustered in few networks

owned by cloud and other infrastructure-as-a-service (IaaS)
providers. If end-to-end security with these services is not
available, the next best thing is for users to establish a secure
link to these networks and route tra�c through it. Cloud
providers make this approach practical as users can deploy
their own virtual machines in the same networks.

3. RELATED WORK
To limit the exposure of their plain-text tra�c some users

connect to Virtual Private Network (VPN) servers o↵ering
encrypted tunnels between the client’s device and some fixed
point in the Internet beyond which tra�c is unencrypted.
While such services protect from a local network attacker,
exposure to network adversaries might even increase as op-
posed to a direct route without the VPN service. Since
VPN gateways are not optimized to be close to web servers
user tra�c might traverse more autonomous systems or even
cross national borders, e.g., from a US gateway to a Euro-
pean server. Even VPNs with diverse gateways employ them
without considering the destination of tra�c.
Tor [15] is an anonymity network where tra�c is encap-

sulated in layers of encryption and usually travels between
three nodes before the original TCP/UDP packet exits to
the Internet. By design Tor attempts no correlation be-
tween the exit of an encrypted circuit and the destination
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Cloud networks are the gateway to Internet services
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Proposed overlay of encrypted tunnels with the cloud

• We replace multi-hop plain-text links with encrypted tunnels
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Topology-aware Network Tunnels (TNT)

•Routing through the tunnel closest to the server
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TNT establishes links to popular cloud networks
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•Initially traffic is routed through a tunnel at random
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Given a destination TNT maps the available paths
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•Active, passive network measurements identify the shortest path
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TNT evaluates the available paths to a destination
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•TNT starts routing packets through the shortest path in real time

Server ACloud
Provider 1

Cloud
Provider 2

Client

Topology-aware
Tunnel 1

Topology-aware
Tunnel 2

AS z

TNT makes routing decisions to minimize plain-text traffic 
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Insecure network paths are minimized

• Tunnel exit in the same network as a web server 
- Zero traffic exposure to the Internet 

• Tunnels to AWS, Azure are colocated with 20% of web services
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Effective Routing Table

by Connection Status

1

t TNT Event Routing State Existing

2

New

0 Stable Main Main

1 Start Converging Main TNT0

2 Stable TNT0 TNT0

3 Update route X Converging TNT0 TNT1

4 Stable TNT1 TNT1

5 Terminate Converging TNT1 Main

6 Stable Main Main

1
Connection status is independent of the transport protocol used.

It is logical, applies to TCP as well as UDP and ICMP and is based

on timers and bi-directional IP packet exchange.

2
Existing connections are in a logically-assured state.

For TCP this is either the Related or Established state.

Table 4: Updating the operating system’s routing
table so as not to disrupt existing TCP connections.
The TNT router transitions the system from the
current table to an updated version by cloning the
table, modifying the new table and setting it as ef-
fective only for new connections.

nections. Initially we clone the default, main routing table
into a new table TNT0. (Time t0 in Table 4) The system
transitions into a state where any already established TCP
connections, as well as logically-assured UDP and ICMP
connections, keep using the main routing table whereas the
destinations of new connections are looked up in the TNT0
table. (t1) Eventually all connections predating the update
(t1) will naturally terminate and the system will reach a
state where all current and future connections will use table
TNT0 exclusively. (t2) Subsequently any updates after time
t2 will clone TNT0 into TNT1, enter a converging state t3

and eventually reach a stable state t4.
If we need to update the e↵ective routing table while the

system is still converging from a previous update we must
allocate an additional table instead of recycling an existing
one. For example a new update during time t3 will cause
the e↵ective table TNT1 to be copied to a new table TNT2
which will then be updated and marked as the e↵ective table.
We cannot reuse table TNT0 at this time since it still being
used by connections predating the last routing update. We
try to carry out updates in batches to avoid the need for
more than two tables at a time. However tra�c scenarios
such as web browsing might cause bursts of updates that do
not fit in a single batch. Under reasonable conditions Linux
does not limit3 us in the number of tables we can maintain.
As soon as all connections associated with an old routing
table are terminated that table becomes eligible for reuse
in a future routing update. In section 7 we quantify the
amount of routing tables necessary under realistic network
activity. A routing cache would eliminate the need for the
above technique. Since version 3.6 [19] the Linux kernel no
longer supports such cache for e�ciency reasons. Windows

3 Since version 2.6.19 the Linux kernel supports up to 232

routing tables and e�ciently addresses them using a hash
table. Previous versions supported up to 255 routing tables.
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Figure 4: CDF of the number of ASes on the net-
work path to each web service. TNT outperforms
ISPs by exposing zero tra�c to the Internet for
18.5% as well as achieving one-hop paths for an ad-
ditional 19.5%.

7 implements a routing cache but the same reasons might
justify its removal from future versions.
To advise the operating system which routing table to use

for each destination lookup we use kernel routing policies.
Each routing table is associated with a mark and we use
Netfilter’s connection tracking to label new connections with
the mark corresponding to the new table. Policies match the
mark individual packets carry to specific routing tables.

6.4 Application-specific routing
As mentioned earlier both the operating system’s core

routing functions and the core of the TNT router make IP-
based routing decisions. At the same time it makes sense
to configure tra�c routing preferences based on high-level
context coming from the transport and application layer.
For instance by default TNT must only handle IP packets
belonging to TCP port 80 flows (HTTP) while HTTPS and
any other tra�c must not be a↵ected. By default Linux
uses a global routing table which a↵ects all packets and is
not suitable to our needs. To achieve the necessary flexibil-
ity we use routing policies which are combined with multiple
routing tables and the Netfilter framework. Using the latter
we mark specific connections or packets based on heuristics
such as destination port. Marked packets subsequently are
matched to specific routing policies leading to correspond-
ing routing tables. For example we have a IP routing table
that is only used for TCP flows to port 80. The system’s de-
fault table is never modified and, unless we explicitly mark
outgoing packets, tra�c is routed as if TNT is not present.

7. EVALUATION

7.1 Network Proximity
We quantify the exposure of plain-text tra�c to adver-

saries adversaries by mapping the network paths to popu-
lar web sites using a series of Internet vantage points. We
then compare the results to a TNT deployment to the AWS
and Azure cloud networks to evaluate the ability of TNT to
minimize tra�c exposure. For our measurements we used
a total of 7 vantage points spread across the US and west-
ern Europe; 4 virtual machines in the Amazon Web Services
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Insecure network paths are minimized

• Tunnel exit in a network near the web server 
- Minimal traffic exchange outside the cloud 

• TNT paths are always shorter than the native path
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It is logical, applies to TCP as well as UDP and ICMP and is based

on timers and bi-directional IP packet exchange.
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Existing connections are in a logically-assured state.

For TCP this is either the Related or Established state.

Table 4: Updating the operating system’s routing
table so as not to disrupt existing TCP connections.
The TNT router transitions the system from the
current table to an updated version by cloning the
table, modifying the new table and setting it as ef-
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table. (t1) Eventually all connections predating the update
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and eventually reach a stable state t4.
If we need to update the e↵ective routing table while the

system is still converging from a previous update we must
allocate an additional table instead of recycling an existing
one. For example a new update during time t3 will cause
the e↵ective table TNT1 to be copied to a new table TNT2
which will then be updated and marked as the e↵ective table.
We cannot reuse table TNT0 at this time since it still being
used by connections predating the last routing update. We
try to carry out updates in batches to avoid the need for
more than two tables at a time. However tra�c scenarios
such as web browsing might cause bursts of updates that do
not fit in a single batch. Under reasonable conditions Linux
does not limit3 us in the number of tables we can maintain.
As soon as all connections associated with an old routing
table are terminated that table becomes eligible for reuse
in a future routing update. In section 7 we quantify the
amount of routing tables necessary under realistic network
activity. A routing cache would eliminate the need for the
above technique. Since version 3.6 [19] the Linux kernel no
longer supports such cache for e�ciency reasons. Windows

3 Since version 2.6.19 the Linux kernel supports up to 232

routing tables and e�ciently addresses them using a hash
table. Previous versions supported up to 255 routing tables.
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Figure 4: CDF of the number of ASes on the net-
work path to each web service. TNT outperforms
ISPs by exposing zero tra�c to the Internet for
18.5% as well as achieving one-hop paths for an ad-
ditional 19.5%.

7 implements a routing cache but the same reasons might
justify its removal from future versions.
To advise the operating system which routing table to use

for each destination lookup we use kernel routing policies.
Each routing table is associated with a mark and we use
Netfilter’s connection tracking to label new connections with
the mark corresponding to the new table. Policies match the
mark individual packets carry to specific routing tables.

6.4 Application-specific routing
As mentioned earlier both the operating system’s core

routing functions and the core of the TNT router make IP-
based routing decisions. At the same time it makes sense
to configure tra�c routing preferences based on high-level
context coming from the transport and application layer.
For instance by default TNT must only handle IP packets
belonging to TCP port 80 flows (HTTP) while HTTPS and
any other tra�c must not be a↵ected. By default Linux
uses a global routing table which a↵ects all packets and is
not suitable to our needs. To achieve the necessary flexibil-
ity we use routing policies which are combined with multiple
routing tables and the Netfilter framework. Using the latter
we mark specific connections or packets based on heuristics
such as destination port. Marked packets subsequently are
matched to specific routing policies leading to correspond-
ing routing tables. For example we have a IP routing table
that is only used for TCP flows to port 80. The system’s de-
fault table is never modified and, unless we explicitly mark
outgoing packets, tra�c is routed as if TNT is not present.

7. EVALUATION

7.1 Network Proximity
We quantify the exposure of plain-text tra�c to adver-

saries adversaries by mapping the network paths to popu-
lar web sites using a series of Internet vantage points. We
then compare the results to a TNT deployment to the AWS
and Azure cloud networks to evaluate the ability of TNT to
minimize tra�c exposure. For our measurements we used
a total of 7 vantage points spread across the US and west-
ern Europe; 4 virtual machines in the Amazon Web Services
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TNT preserves the browsing experience

• Page load time and latency do not deviate from the baseline 
• Used the network at Columbia University for comparison
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Figure 9: RTT for packets routed either through a
fast academic network or a TNT link to AWS.

Figure 10: Load time for sessions routed through a
fast academic network or a TNT link to AWS.

example is server C in figure 1 where only the path between
the cloud and the server is unencrypted. We have shown
that in such cases TNT always creates shorter paths. There
is however a tradeo↵ between reducing the number of ASes
observing plain-text tra�c and routing it through networks
that may not have originally observed it. Especially ASes
adjacent to the cloud may seem at an advantageous position
to monitor the browsing behavior of TNT users. However we
do not observe any notable deviation in the shape of the fre-
quency distribution of ASes involved when TNT is present.
Without TNT the most frequent AS is found in 22.5% of the
paths and with TNT the most frequent AS is found in 19%
of the paths. These are two di↵erent ASes and naturally,
because of our routing decisions, some ASes see more and
others less tra�c. However, as far as users are concerned
there is no single AS that can observe more of their brows-
ing history than without TNT. This can be explained by
cloud providers having multiple upstream providers for re-
dundancy and load balancing reasons. In fact, the diversity
of ASes involved actually increases.

When the cloud is used as a gateway by TNT it appears to
be the source of clients’ tra�c at the IP level. This facilitates
TNT routing. We do not attempt to hide or anonymize the
source or destination of tra�c. ASes observing encrypted
client tra�c entering the cloud and unencrypted tra�c exit-
ing the cloud can attribute cloud-originating tra�c back to
a particular client. An adversary can use the timing and size
of packets to match encrypted flows between clients and the
cloud to plain-text tra�c between the cloud and external
sites. Cover tra�c and shaping techniques may obfuscate

such heuristics. However, we argue that the actual content
of plain-text tra�c carries a plethora of information that
can identify users. For instance HTTP cookies, referrers
and search terms are much more reliable in tracking users
than the IP address of the device originating the tra�c.
An active adversary could try to either block our abil-

ity to map network paths or falsify the data we receive. It
could also try to block TNT links. To make TNT network
measurements resistant to blocking we tailor our probes to
the packets a specific service is expecting to receive. For
HTTP we transmit IP packets with a TCP header indicat-
ing destination port 80. An adversary blocking such packets
would also stop actual user tra�c towards a service. Finger-
printing tra�c generated by TNT measurements is possible
though. Instead of blocking our network measurements an
adversary could tamper with the data we receive by spoofing
responses from upstream routers. However in section 7 we
describe how we correlate network paths resulting from data
plane measurements with AS paths from BGP announce-
ments. A measured path that is infeasible is not taken into
consideration by TNT. Attacks against BGP are beyond the
scope of this work and any solution is orthogonal. An active
adversary situated between the client and the cloud could
try to prevent TNT links from being established. Our threat
model does not include censorship and failure to run TNT in
a network should warn users about the operators intentions.
Finally it might seem that TNT centralizes tra�c flows

within a few cloud networks which become appealing tar-
gets. However our threat model focuses on adversaries that
are not powerful enough to attack the cloud but can carry
out passive and active attacks today because of their loca-
tion on Internet. This includes ISPs and other infrastruc-
ture operators. Moreover the key idea behind TNT is to
utilize cloud networks to reach destinations already hosted
within them. Therefore adversaries powerful enough to at-
tack the cloud gain no advantage from the presence of TNT.
As an additional, entirely optional, use for TNT we propose
routing tra�c to Internet destinations outside the cloud as
to minimize the network path to them. While this makes
such tra�c available to adversaries capable of compromis-
ing cloud networks we argue that the benefit of shielding
plain text tra�c from every other adversary on the Internet
presents an appealing tradeo↵. At the same time the TNT
architecture benefits from and encourages scaling to more
cloud networks. We thus expect that individual clouds will
see a decrease in the tra�c going through.

9. LIMITATIONS
TNT maps network paths using IP-based measurements.

It cannot identify hops operating below OSI layer 3 such
as in the case of MPLS tunnels. As a result it will mis-
represent the length of network paths featuring such tra�c
encapsulation. This is not a limitation of the TNT archi-
tecture but a constraint imposed by our implementation of
network measurements. Gueye et al. [17] can approximate
the geographical location of an IP host in the presence of
loaded links. They use a set of known landmarks to com-
pare the perceived end-to-end network delay to expected
propagation time of the underlying physical links. Using the
existing TNT distributed architecture we could approximate
the location of network hops on the Internet and highlight
hops that appear adjacent at layer 3 but are separated by a

Figure 9: RTT for packets routed either through a
fast academic network or a TNT link to AWS.
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Figure 10: Load time for sessions routed through a
fast academic network or a TNT link to AWS.
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try to prevent TNT links from being established. Our threat
model does not include censorship and failure to run TNT in
a network should warn users about the operators intentions.
Finally it might seem that TNT centralizes tra�c flows
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gets. However our threat model focuses on adversaries that
are not powerful enough to attack the cloud but can carry
out passive and active attacks today because of their loca-
tion on Internet. This includes ISPs and other infrastruc-
ture operators. Moreover the key idea behind TNT is to
utilize cloud networks to reach destinations already hosted
within them. Therefore adversaries powerful enough to at-
tack the cloud gain no advantage from the presence of TNT.
As an additional, entirely optional, use for TNT we propose
routing tra�c to Internet destinations outside the cloud as
to minimize the network path to them. While this makes
such tra�c available to adversaries capable of compromis-
ing cloud networks we argue that the benefit of shielding
plain text tra�c from every other adversary on the Internet
presents an appealing tradeo↵. At the same time the TNT
architecture benefits from and encourages scaling to more
cloud networks. We thus expect that individual clouds will
see a decrease in the tra�c going through.

9. LIMITATIONS
TNT maps network paths using IP-based measurements.

It cannot identify hops operating below OSI layer 3 such
as in the case of MPLS tunnels. As a result it will mis-
represent the length of network paths featuring such tra�c
encapsulation. This is not a limitation of the TNT archi-
tecture but a constraint imposed by our implementation of
network measurements. Gueye et al. [17] can approximate
the geographical location of an IP host in the presence of
loaded links. They use a set of known landmarks to com-
pare the perceived end-to-end network delay to expected
propagation time of the underlying physical links. Using the
existing TNT distributed architecture we could approximate
the location of network hops on the Internet and highlight
hops that appear adjacent at layer 3 but are separated by a
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Topology-aware network tunnels

• An overlay of encrypted links to key network infrastructure  

• Motivated by the clustering of services in the cloud 

• Minimize plain-text traffic on the Internet 

• Without the cooperation of individual services 

• Put clients in control of their security 

• Deployable using existing technologies and resources

17

mailto:kontaxis@cs.columbia.edu


Find out more about TNT

https://www.cs.columbia.edu/~kontaxis/tnt/ 

kontaxis@cs.columbia.edu

Server ACloud
Provider 1

Server B

Cloud
Provider 2

AS x

AS y

AS 1Client

Topology-aware
Tunnel 1

Topology-aware
Tunnel 2

AS z Server C

Figure 1: In the TNT architecture an overlay of secure topology-aware tunnels is established between the
client and a set of network vantage points. The number and placement of secure tunnels is strategically
selected to minimize the network distance packets need to travel outside the overlay to reach their destination.
Individual network packets are intelligently routed through the tunnel exiting closest to their destination.
Tunnel exits within the same network as the destination of a packet (Servers A, B) eliminate the exposure
of tra�c to network adversaries.

Figure 2: Example of a network path on the Inter-
net. For insecure protocols such as HTTP data are
exposed across the path to operators of the under-
lying infrastructure.

with these infrastructure providers. This addresses the first
challenge from above. That way we can shorten the insecure
network path and essentially bring the client as close to these
servers as possible, ideally within the same network. As a
result, the tra�c of insecure protocols will have minimal or
zero exposure on the Internet. Apart from minimizing the
overall path length, we also define metrics rewarding or pe-
nalizing the presence of a trusted or untrusted intermediate
network in the path. The trustworthiness of a network is
context specific so in this paper we focus on path length.

Figure 2 presents an example of a network path today.
The set of links and routers a client’s packets must tra-
verse to reach a server is grouped into autonomous systems
(ASes) and controlled by distinct organizations. Note that
such path might span di↵erent countries or continents. This
translates to potential passive and active attacks against the
user’s web browsing or e-mail.

Figure 1 presents the TNT architecture as an overlay on
the existing Internet infrastructure. TNT has established
secure tunnels between the client and two cloud networks
that exhibit high clustering of Internet services. Server A

is hosted by Cloud Provider 1 and we can reach it through
Topology-aware Tunnel 1 without exposing plain-text traf-
fic to the Internet. Packets towards Server A enter the tun-
nel before leaving the user’s network and are encrypted and

signed. Internet routers operated by AS 1 and AS x observe
an encrypted flow from the user to Server A. Without TNT
these ASes have access to plain-text tra�c. Packets exit
the tunnel inside the trusted network of Cloud Provider 1

and are authenticated and decrypted. Subsequently pack-
ets transit the cloud provider’s network and reach Server A

which is unaware of the process. To reach Server C without
TNT the user’s packets will travel in plain text through AS

1, AS y and AS z. With a TNT link to Cloud Provider 2

they travel encrypted and signed through AS 1 and AS y.
Server C is an outlier not hosted in a cluster of Internet
services. In this case TNT is able to minimize the length
of the insecure network path so instead of 3 ASes only AS z

will be able to observe plain-text tra�c. Next we describe
how the TNT router determines the optimal tunnel to route
tra�c through so as to minimize insecure network paths.

5.2 The TNT Router
The TNT router is a routing software suite managing

topology-aware tunnels and directing tra�c through them.
It is located on the client’s system or local network gate-
way, for instance a home router, and maintains topology-
aware tunnels with remote networks based on the placement
strategy described earlier. It has a network-mapping and
a decision-making component. Given the available tunnels
and a specific destination address the mapping component
employs a set of probes to discover the network path be-
tween each tunnel’s exit on the remote network and the
destination. The discovery process involves active and pas-
sive network measurements described in section 7. The in-
formation is passed on to the decision-making component
which evaluates it and assigns metrics on each tunnel based
on its suitability to carry tra�c to the specific destination.
Based on the metric the TNT router directs outgoing tra�c
through the tunnel which minimizes its value. This satis-
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